0018

0018

] COLLABORATORS
TITLE
0018
ACTION NAME DATE SIGNATURE
WRITTEN BY August 8, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

0018

Contents

1 0018
1.1 Personal Fonts Maker - O. PFM IFF Data Format

0018

Chapter 1

0018

1.1 Personal Fonts Maker - O. PFM IFF Data Format

O. PFM IFF Data Format
As explained in sections 4.3 ("Load PFM Font"), 4.4 ("Save PFM
Font"), 4.8 ("Load Character Set") and 4.9 ("Save Character Set"), the

Personal Fonts Maker uses different IFF conforming formats to load and
save its font and character set files. This appendix contains the
necessary technical documentation to create external programs that can
access and create files which are compatible with the Personal Fonts Maker
formats. Programmers are encouraged to use this information to write their
own routines to handle fonts and character sets.

This appendix assumes that the Commodore "’'EA IFF 85’ Standard for
Interchange Format Files" documentation has been understood. A disk for
software developers, which includes the "ParseCPFM" tool to analyze font
files and character set files, is available from Cloanto.

0.1 The IFF FORM: CPFM

A CPFM (Cloanto Personal Fonts Maker) IFF FORM contains one or more
IFHD (InFormation HeaDer) chunks, each (not necessarily immediately)
followed by a CHDT (CHaracter DaTa) chunk. Each IFHD describes the
contents of the CHDT chunk which follows. The optional CSNM (Character Set
NaMe) chunk contains the name of the character set used to create the data
described by the preceding chunks. Reference point positions are stored in
the optional REFP (REFerence Points) chunk. Additional chunks may be added
in future versions of the program to support new functions.

An IFHD chunk gives some general information on the following CHDT
chunk. The data contained in the IFHD chunk tells the program whether the
CHDT which follows contains data relative to a font or to a character set.
Information like the maximum size of the character images, the aspect
ratio (horizontal and vertical densities) and other data is also stored in
the IFHD chunk. The CHDT chunk contains the data relative to each
character, like the graphical image and the position in the encoding
vector (if the chunk contains character set data) of each character. The
IFHD chunk is called a property chunk, and must appear before any CHDT
chunk. The CSNM chunk must come after (not necessarily immediately after)

0018 2/9

the IFHD chunk it refers to.

A character set needs to store information which is very similar to
that of a font. The default images of the characters are treated similarly
to the images of the characters in a font. Additional data regarding the
character encoding vector is also contained in the character set data. A
couple of IFHD+CHDT chunks either contain font data or character set data.
It is possible, even if not yet supported by the program, that the same
file may contain information regarding a character set (a couple of
chunks), and a font designed having that character set in mind (other two
chunks) .

0.2 IFF Chunks: IFHD

An IFHD (InFormation HeaDer) chunk contains an instance of an
InformationHeader structure:

struct InformationHeader

{

UWORD MaxWidth, MaxHeight; /% maximum character size */

UWORD HorizDPI, VertDPI; /* print/display density =/

UWORD MaxBytesPerLine; /+ bytes sufficient to store an image row =/
UBYTE BitPlanes; /+ number of bitplanes x/

UBYTE System; /+x file creator’s operating system x/

ULONG Flags; /+ font or character set flags */

}i

/* System */

#define IHS_AMIGA_SYSTEM 0
#define IHS_MSDOS_SYSTEM 1

/* Flags =/

#define IHF_ATTRIBUTES O0x0000FFFF /* mask for font/cset attr. */
#define IHF_ITALIC 0x00000001

#define IHF_BOLD 0x00000002 /*+ excludes IHF_LIGHT =«/
#define IHF_LIGHT 0x00000004 /* excludes IHF_BOLD x*/
#define IHF_UNDERLINE 0x00000008

#define IHF_OUTLINE 0x00000010

#define IHF_SHADOW 0x00000020

#define IHF_SUPERSCRIPT 0x00000040 /* excludes IHF_SUBSCRIPT =/
#define IHF_SUBSCRIPT 0x00000080 /* excludes IHF_SUPERSCRIPT x/
#define IHF_ENLARGED 0x00000100 /* excludes IHF_CONDENSED =/
#define IHF_CONDENSED 0x00000200 /% excludes IHF ENLARGED =/
#define IHF_REVERSE 0x00000400

#define IHF_SERIF 0x00000800

#define IHF_DRAFT 0x00001000

#define IHF_FIXED_PITCH 0x00002000

#define IHF_RIGHT_TO_LEFT 0x00004000

#define IHF_LANDSCAPE 0x00008000

#define IHF_FONT_HEADER 0x80000000 /* font IFHD+CHDT (no cset) =*/

Fields are filed in the order shown. The compiler must not add pad
bytes to the structure. UWORD and ULONG are high bytes first.

Values in MaxWidth and MaxHeight must be in the range 1-65535. The two

0018

3/9

values must be 16 and 18 (decimal), respectively, if the IFHD refers to a
character set (rather than a font).

Valid values for HorizDPI and VertDPI range from 0 to 65535. If one of
the two is 0, the program uses its own current aspect ratio. The two
fields are ignored (the screen display ratio is used) if the data is read
as a character set, but should always be filled in correctly when writing
the character set data. The ratio of (a) equals the ratio of (b) when
XDPI (a) / YDPI(a) == XDPI(b) / YDPI(b). This is important to understand
when and how images are stretched.

MaxBytesPerLine is MaxWidth divided by 8. The value must be 2 if it
refers to character set data (rather than font data).

The Personal Fonts Maker does not read the encoding vector of character
set data if the System field is not set to the same operating system under
which the program is running. For example, the Amiga version of the
Personal Fonts Maker reads only the image data in a character set’s CHDT
chunk if the operating system field is not set to IHS_AMIGA_SYSTEM.

The Flags field should have the IHF_FONT_HEADER flag set if the chunk
refers to font data, and cleared (not set) if a character set is being
described instead. In both cases (description of a font or character set),
different font attribute flags can be used, keeping in mind that some
attributes mutually exclude each other (e.g. IHF_SUPERSCRIPT and
IHF_SUBSCRIPT cannot be set at the same time).

The ATRB Font Format Description Language variable (section 2.7.2.1)
can be extracted from the Flags field using the following formula:

ATRB = InformationHeader.Flags & IHF_ATTRIBUTES

BitPlanes must contain a value in the range 0 to 255. A value of O
means that all characters are empty.

Programs reading the IFHD chunk must be able to support future
extensions of the data format. The size of the InformationHeader structure
can increase. Programs reading this data should seek from the end of the
structure which was read, to the end of the chunk. The number of bytes to
skip can be calculated with a similar formula:

SkipBytes = IFHDChunkLength - sizeof (struct InformationHeader)

0.3 IFF Chunks: CHDT

The CHDT (CHaracter DaTa) chunk contains an ordered sequence of
character units, each referring to a character in the font or character
set being described. The units are divided into three parts: the units’s
format descriptor, a character header, containing non-graphical data, and
a variable-length part containing the data associated with the character
image of the character referenced to.

The format descriptor byte specifies the format of the character header
and the Cloanto Character Image Format (CCIF) used to achieve the required
level of data compression and access speed. Using the CCIF compression
algorithms described here, the font files on the Personal Fonts Maker

0018

4/9

disks have been reduced by an average of 47% of their uncompressed size,
and the character sets by more than 55%.

The image data is divided into bitplanes, which in turn are divided
into horizontal rows, each described by a maximum of MaxBytesPerLine
bytes. Compressed graphical data is stored bytewise (8-bit bytes) or in
nibbles (4-bits), depending on the compression technique. If groups of
identical bits are not compressed, the data is stored bitwise.

Programs handling CCIF data must always read and write across rows and
bitplanes. All rows within the specified frame, of all bitplanes, are
merged into one ideal row of bits, left to right, top to bottom, from one
bitplane to the next.

No pad bytes are used between the character units. Adjacent character
units must not necessarily refer to contiguous characters, but they must
be ordered by the position of the character in the font, from the
beginning to the end (i.e. lower character codes first), though the
Personal Fonts Maker can load character units even if they are in "sparse"
order. A program loading character units from a CHDT chunk can determine
when the last unit was read by verifying when the end of the chunk is
reached. As specified in the IFF documentation, odd-length chunks must be
followed by a pad byte.

The following data structures are used:
UBYTE FormatDescriptor;

struct FontCImageHead8
{

UBYTE CharNum; /* position of the character in the font =/

UBYTE XSize; /* horizontal image size in dot-columns (XSIZ) =/
BYTE Space; /* total space before next character (SPCE) =/
BYTE Offset; /+ offset of this character’s beginning (KERN) =/

}i

struct FontCImageHeadl6

UWORD CharNum; /+ position of the character in the font */

UWORD XSize; /* horizontal image size in dot-columns (XSIZ) «/
WORD Space; /* total space before next character (SPCE) =x/
WORD Offset; /+ offset of this character’s beginning (KERN) x/

}i

struct CSetCImageHead8

{

BYTE CharNum; /+ position in the character set */

BYTE EqualToSystemChar; /* code in the host system’s character set */
}i

struct CSetCImageHeadlb

{

WORD CharNum; /+ position in the character set =/

WORD EqualToSystemChar; /* code in the host system’s character set x/
}i

/* EqualToSystemChar =/

0018

#define NOT_IN_SYSTEM_SET -1 /+* no equivalent in system cset =/

struct CCIFPlanelInfo

{

UBYTE PlanePick; /+ planes described by graphical data =/
UBYTE PlaneOnOff; /* status of other planes x/

}i

struct CCIFFrame8

UBYTE BlankColumns;
UBYTE BlankRows;
UBYTE DataColumns;

UBYTE DataRows;
bi

struct CCIFFramel6

UWORD BlankColumns;
UWORD BlankRows;
UWORD DataColumns;

UWORD DataRows;
}i

/* FormatDescriptor =/

#define FD_CIHEADS 0x01
#define FD_PLANEINFO 0x02
#define FD_FRAMES 0x04
#define FD_FRAME1G6 0x08
#define FD_PACKET4 0x10
#define FD_PACKETS 0x20
#define FD_RESERVED (0x40 | 0x80)

The FormatDescriptor byte describes exactly which structures follow in
the data unit, and how the graphical data is stored. The eight bits in

this byte store

FD_CIHEADS

FD_PLANEINFO:
FD_FRAMES

FD_FRAME16

FD_PACKET4

FD_PACKETS

the following information:

compact (8-bit) CSet/Font-CImageHead structure follows if
the bit is set. Default is normal (full) structure.

specifies whether bitplane information data follows.
CCIF 8-bit frame data structure follows.

CCIF 16-bit frame data structure follows. Setting both
FD_FRAME8 and FD_FRAME16 bits is a reserved condition,
reserved for future implementations.

CCIF "1+3"-bit packets are used.

CCIF "1+7"-bit packets are used. Setting both FD_PACKET4
and FD_PACKETS8 bits is currently forbidden and remains
reserved for future implementations. It does not make
sense to set FD_FRAME8, FD_FRAME16, FD_PACKET4 or
FD_PACKET8 if no image data follows (zero
character-width) .

0018

6/9

FD_RESERVED : reserved for future versions, must be set to 0.

It is currently not permitted to set both FD_FRAMES8 and FD_FRAME16
bits, or both FD_PACKET4 and FD_PACKET8 bits, or any of the FD_UNUSED
bits.

Depending on whether a font or a character set is being described,
either the FontCImageHead or the CSetCImageHead structure is used to
introduce each character unit. An instance of the FontCImageHead or
CSetCImageHead structure must exist in each character unit. If the
FD_CIMHEAD8 bit of the format descriptor byte is set, the compact version
of these structures is used. The compact structures occupy half the space
of their full-length counterpart. As a trade-off, the compact structures
can only be used if each of the values to be stored in the fields of the
structure can be represented using 8 bits. This means that all unsigned
values must be in the range 0-255 and signed values must be in the range
from -128 to 127. It is important not to forget that even the CharNum
field can exceed this limit, if it refers to the undefined characer
(decimal code 256).

The FD_PLANEINFO bit of the format description byte specifies whether
an instance of a CCIFPlaneInfo structure follows. Such a structure is
useful when coloured fonts are processed, or to compress those characters
which are completely empty (all dots in the background colour) or consist
of one filled rectangle. Multiple-colour images are stored in more than
one bitplane. For a given character one or more bitplanes may contain
either all "0’ or all ’'1’ bits. In this case, memory can be saved if a
more compact description of these bitplanes is saved, rather than the
bitplanes themselves. If no memory can be saved in this way, the second
bit of the format description byte should be cleared. The bits in the
PlanePick field of the CCIFPlaneInfo structure tell the program which
planes follow in the character image data. The status of the PlaneOnOff
bits determines how the remaining bitplanes are to be set (all '0’s or all
"1’”s). Only the dots included in the frame described by the CCIFFrame
structure (if present) are affected. Even if the BitPlanes field in the
InformationHeader structure contains a value higher than 8, only the first
eight bitplanes can be picked, cleared or set with this method. Any
bitplanes after the first 8 are considered to be "picked".

One of the simplest measures that can be taken in order to store a
character’s image data in the least possible space is to "cut" away the
outermost empty rows and columns of the image. The first two fields in the
CCIFFrame respectively specify how many blank columns and rows precede the
region of coloured dots, starting from the top-left corner. These blank
dots do not need to be stored in the image data. The other two fields
indicate the number of columns described by the following image data, and
how many image rows are described. The image data therefore only describes
the content of the smallest possible rectangle containing all coloured
dots. If the dimensions of this rectangle do not exceed 256 dots, and the
top and left offset of the rectangle do not exceed this value either, the
more compact 8-bit fields can be used. The bits FD_FRAMES8 and FD_FRAME16
of the format descriptor byte specify which structure to use. If neither
of the two bits is set, all dots which make up the character image must be
stored.

Certain limit-cases are acceptable, but should be avoided. For example,

0018

719

if there are no outer empty rows or columns, it is a waste to use the
CCIFFrame structure. This is also true if there are no dots in the
character (zero-width character, not stored by the Personal Fonts Maker).

The bits FD_PACKET4 and FD_PACKET8 of the format descriptor byte
specify whether the rows of dots which make up the character image are
packed into nibbles or bytes. If neither of the two bits is set, the data
is stored bitwise. Images are processed left to right, top to bottom,
bitplane by bitplane. The leftmost dots are stored in the most significant
bits in each byte. After all bits have been written, any remaining bits in
the current byte are set to zero and used as pad bits.

If the FD_PACKET4 bit is set, the content of each row of bits in a
bitplane is compressed into a sequence of packets. The packets are 4-bits
long. The most significant bit in a packet determines the status (0’ or
"1”) of the data bits which are described. The remaining three bits
contain a number from 1 to 8 (normally this would be 0 to 7, but 1 is
always added since it does not make sense to describe zero bits)
indicating how many bits have the specified value (i.e. 0 or 1). If there
are more than 8 bits with the same value, more packets with the same
setting of the most significant bit can be generated. This technique is
very efficient to compress the description of rows of dots in a font’s
character image, especially if it is combined with a CCIFFrame structure.
If the last packet in the last row of the last bitplane terminates in the
middle of a byte, the remaining four bits are set to zero and used as pad
bits.

If the FD_PACKETS8 bit of the format descriptor byte is set, 8-bit
packets are used. Up to 128 bits of data can be compressed into such a
packet. This can be more space-efficient in extremely large or very high
resolution fonts, and to describe long sequences of identical bits across
rows of smaller characters.

Once again, it should be noted that if a CCIFFrame structure is used,
only the rows which are contained in the specified frame are affected by
the CCIFPlaneInfo structure and are described by the 4 or 8 bit packets,
or by the bitmap data.

The order in which the different data structures are to be written in
the CHDT chunk is the following (optional structures are enclosed by
parentheses) :

FormatDescriptor

FontCImageHead8 | FontCImageHeadl6 | CSetCImageHead8 | CSetCImageHeadl6
(CCIFPlaneInfo)

(CCIFFrame8 | CCIFFramel6)

(graphical data)

It is reasonable not to write any graphical data if a character
consists of zero rows and/or columns (it is however preferable not to save
such characters at all), or if the CCIFPlaneInfo structure (perhaps
combined with CCIFFrame) has already given a complete description of the
character.

The data compression techniques supported by the Cloanto Character
Image Format are extremely easy to handle. Fonts compressed in this way
can fit into as little as 40 percent of the space occupied by the same

0018

8/9

non—-compressed font. It is up to the programs writing the character units
to choose the most appropriate format to store each character’s data.
Different techniques can be combined. A compression method should never be
applied to a character if the resulting data would be longer than the
non-compressed data. This is possible, especially using very small font
formats (e.g. 6 x 5 characters).

0.4 IFF Chunks: CSNM

The CSNM chunk contains the name of a character set. This is the name
of the character set which was used when the font was designed, if the
chunk’s data regards a font (rather than a character set). The CSNM chunk
may be omitted if the character set is unknown (e.g. if no character set
was selected). If the CSNM chunk follows an IFHD chunk describing
character set data, the string contains the name which was originally
assigned to the character set by the user (in the save command), i.e. the
original file name (without path). This enables the program to detect
whether the file has been renamed, and to display a warning message. It is
better not to rename character set files, as they may be referenced by
fonts created using these sets. Sections 4.3 ("Load PFM Font") and 4.9
("Save Character Set") explain in more detail what the Personal Fonts
Maker uses this name for.

The CSNM chunk may appear only after the IFHD chunk describing the data
to which CSNM refers. The CSNM chunk may appear either before or after the
CHDT chunk. A CSNM chunk does not refer to the whole CPFM FORM, but is
always relative to the current couple of IFHD and CHDT chunks. The use of
the CSNM chunk is optional.

The string contained in CSNM is an exact copy of the character set file
name. The same character set and letter-case (capitals vs. lower case)
used for the file name are used. Characters whose code is out of the range
33-126 should be avoided, as these may have different meanings on
operating systems other than the one where the file was originally
written. The maximum length for the file name is 63 characters (without
zero terminator). At read time, the length of the string is determined by
the chunk length. The string is not zero-terminated.

0.5 IFF Chunks: REFP

This (optional) chunk contains the vertical positions of one or more
reference points. The REFP chunk must always contain data for at least
four reference points, describing the following lines (from the top): cap
line, mean line, baseline and underline position. These values must always
be the first four in the REFP chunk. Section 3.21 ("Reference Points")
has more on this subject.

The Personal Fonts Maker supports a minimum of four reference points.
Other programs may support a minimum of more than four reference points.
If the REFP chunk being read contains fewer values than the minimum number
of reference points used by the program which is reading the data, the
reference points to which no value could be assigned should be reset to a
default value.

If the REFP chunk contains more values than the maximum number of

0018 9/9

reference points supported by the reader program, only the first wvalues
should be read. The values are always ordered, from the first reference
point to the last. The first reference point is always reference point
number one. Each value, ranging from 0 to YMAX, is stored as an unsigned
word (high byte first). Thus:

NumRefP = REFPChunkLength / 2
ReadBytes = (NumRefP > MaxRefP ? MaxRefP : NumRefP) x 2
SkipBytes = REFPChunkLength - ReadBytes

The values can range from 0 to MaxHeight (IFHD chunk), or from 0 to 18
if IFHD and REFP refer to a character set.

	0018
	Personal Fonts Maker - O. PFM IFF Data Format

